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On the basis of a numerical analysis, a boundary resonance in a semi-infinite elastic waveguide with mixed 

boundary conditions, when a part of the surface is rigidly fixed while a force which is harmonically 

dependent on time is imposed on the other part, is found and analysed. Here, the frequency found for the 

boundary resonance lies below the first stopping frequency of the waveguide so that the boundary 

resonance in the situation being considered is of the same nature as a resonance in a system without 

damping: an unlimited increase is observed in the amplitudes of the characteristics of the wave field as the 

frequency of the vibrations tends to a value Cl,, unlike the conventional form of a resonance with finite 

amplitudes [l-3]. The specific behaviour of the amplitude of excitation of a normal wave with a purely 

imaginary propagation constant in the neighbourhood of the frequency of the boundary resonance a, is 

found. 

1. THE PROBLEM of forced harmonic vibrations of an elastic semi-infinite waveguide O<X< 03, 
0~ Z< 2H with an unstressed end X = 0, OS Z<2H and a rigidly fixed lower face Z = 0, X>O is 
considered. The field is excited by a normal force applied to the upper face on which it is assumed 
that there is no tangential stress. Hence, the boundary value problem for the displacement vector 
u = {u,(x, z), u,(z, z)} in the dimensionless coordinates x = X/H, z = Z/H (the time factor is 
omitted everywhere) has the form 

GV’u + G (1 - 2~)~’ grad div u + pot = 0 

kc (3, 0) = u, (Lx, 0) =.o, s> 0 

a, (0, 2) = z,x(O, 2) = 0, z E IO, 21 

0, (x, 2) = 2Gf (4, z,, (5, 2) = 0, z > 0 

(1.1) 

where G is the shear modulus of the material, II is Poisson’s ratio, p is the specific density and, 
according to Hooke’s law, the stress field has the form 

=x au V -= L+_ 
26 82 ( au, -+!%), &=!S+_&(~+!$) 

I-2v a2 

(1.2) 
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In addition to (l.l), it is assumed that the condition for the energy density to be integrable in the 
neighbourhoods of the corner points of the waveguide is satisfied. Next, we consider a range of 
frequencies up to the first cutoff frequency of the waveguide so that the displacement vector from 
(1.1) may be considered as being decaying as x-+ cl. 

We will construct the solution of the boundary value problem (1.1) using the method of 
superposition [l, 41. Omitting the intermediate caiculations, we can represent the displacement 
vector in the form (everywhere below, summation over n is carried out from 0 to ~3): 

- c ( Mn #Lew (-- p14- 
et8 1 
R exp (- ~4 sin GM + e 

n 1 

0(f)=F-q EE.(z,Y,Bnl 

A (z) = q1q2 (z” $- P (z)) ch 2q, ch 2q2 - 9 (q12q22 i- O2 (z)) sh 2q, sh 2q, - 
- 2~~q~q28 (4 

Pj (~9 Z) = ch q2 al+j (~1 fl (~9 2) + sh q2 Q+I (~1 fi (7, 21, i =CC I, 2 

Pa (r, 2) = {ch q,zA (z) + q# (Q ch 2q, [ch qzal (2) fl (T 4 + sh %a, @I* 
.f&, 4lM’ (~1 ch 2qd 

fi, 6, 4 = ch gaal+f (z) d, (a, z) + sh q2a4+t W 4 IT 4, i = k 2 

Rs (2, z) = {sh q,zA (z) + ~6 (7) ch 2q, [ch q2al (2) 4 (a, 2) + sh q,% (@- 

- 4 6, 41 Y&3 (~1 ch &d 
co 

F(z) = -$I f(z) sin (TX) dz 

aI (2) = 8 (z) sh qB + 2% :h qa ch 2q, - ~1~2 ch ~a sh 2q, 

(1.3) 
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a, (T) = z*q,q, sh 2q, ch qe - O9 (z) ch 2q, sh qs - 30 (T) sh qa 

a3 (4 = -AI (@ sh 2e sh 4s - +%lq' ch qs + ma0 6) ch %, ch qs: 

a4 (T) = 9 ch 2q, ch q’ - qlqs sh 2q, sh qn - 0 (9 ch qa 
a, (7) = W’ (T) ch q’ ch 2q, - zaq,q’ sh 2q, sh q’ - 30 (z) ch q’ 

~6 (7) = 7’ qlq’ sh qs + qlq’e (4 sh qs ch 2q, - .tae (7) sh 2q, ch qr 

&I (z) = 
z’ (ci” - 2Q13)-~n'Q33++l~33 

2(T'f fin'- a')(++ fin'- n'*) 

hart(~) = (-11)" 

4TJBn3 (Qa'- Q?) - (73 + en') PI* + WS23' 

rfln (T’ + B,’ - Ql’) (T’ + fin’- Q”) 

fs (‘c, 4 = 
T’ sh q1 (I - 2) 

qlch2ql - 
;zc,“,+@;;;; + qs c”q;$, 1) 

d, (z, 2) = _ ‘“$ gq; 2) _ 7;;;;; ;; “c”h’;,: + r ch “,’ ‘is- 1) 
h 

da (7, 2) = 
t ch q1 (z - 2) rqlqn ch qn sh 41 z 

ch2q, - +r 
sh qa (z - 1) 

0 (7) sh qz ch 2ql sh qn 

Here, cl = (2G(l-v)l((p(l-2~)))“~, c2 = (G/p)u2 are the velocities of the longitudinal and 
transverse waves in the waveguide material and IV,, (n = 1, 2, . . .) is a sequence of unknown 
numbers. Here, A(T) = 0 is the dispersion equation for an infinite layer Ix I< CO, 0 <z< 2 with a 
rigidly fixed lower face z = 0 and an unstressed face z = 2 [4]. The displacement vector in the form 
of (1.3) satisfies all the boundary conditions from (1.1) with the exception of the condition 
~~(0, z) = 0 (regardless of the dependence on the values of the coefficients IV,). Satisfaction of this 
remaining boundary condition leads to the following infinite system of linear algebraic equations in 
the unknowns M,, : 

M,= 2p3B, 
~'$J-IJlPaP,' 

+ (- 1)” j [C (7) th qz + D (7) cth Aa31 6 4 dz + 

0 . 

+ B.~U~) - D (T)] a32 (TV n) dr 
I 

0 

C (z) A W = Tq,F (T) ch wl (~1 + q& W ch wa (7) + Ssn @I ch qsa, (2) 
lJ @I A (T) = w,F (@ sh q+ W + q& (~1 sh qsa, 6) + Ssn @F) sh qsue ($ W4) 

&n 6) = + c M, (&- 0 (8,) 
T’ + Pa' 1 

ssn (‘F) = +- ~WnM.(~-3 0’ (B,) 
n @’ + Pa') 1 

th 2ql U,,(T) = To---&--- +B th 4% 

0 6) ch 2ql -qQzthqs 
th &I 

al'(q = -+ ql --ai+q’cthq’ 
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a2l (q = fj (7) _ 

In order to take account of the contribution of all of the unknowns IV,, of the infinite system (1.4) 
during its reduction to a finite algebraic system of equations in IV, (n = 1, . . , N) and, also, for a 
full analysis within the framework of the approach of the immediate wave field in the neighbour- 
hood of an end of the waveguide which has been adopted, a priori knowledge of the asymptotic 
behaviour of the unknowns M, when n+ w is of decisive importance. An investigation of system 
(1.4) using the technique of the Mellin integral transform (see [5]) shows that the asymptotic form 

M, = a~,,-~ + b (-1)” BnV1 + 0 (flnwa), n + oo (1.5) 

holds in the case of a bounded solution { M,, }z= ’ of system (1.4), where a and b are certain 
constants which are linearly dependent on the specified load f(x) and y = Y(V) E (l/2, 1) is the first 
root, in ascending order of the real parts, of the equation 

(3-44v)~os~+rcy+(1-2v)~--y’=O, Rey>O (1.6) 

Here, the second term on the right-hand side of (1.5) corresponds to the first root of the equation 
sin2(ny/2) - y2 = 0 in the same half plane Rey> 0. 

As regards the organization of the computational process for solving the truncated system (1.4) 
and the qualitative and quantitative analysis of the stressed-deformed state of the waveguide in the 
neighbourhoods of the corner points on the basis of the use of the asymptotic behaviour of M, in 
(1.4) and (1.3) respectively, see [l, 51. 

2. The boundary value problem (1.1) was solved numerically on the basis of representation (1.3) 
and system (1.4) for the load 

f(x)= ( 
1, XE [l/2, 11 

0, 3 Fz [l/2,1] 
(2.1) 

for Poisson’s ratio v = 0.3 over a range of frequencies 0.4 d fin2 d 0.78 so that Cl2 < n/4 = a(‘), where 
fi(‘) is the first cutoff frequency of the waveguide under consideration, that is, there are no travelling 
waves in the frequency range being considered. This investigation showed that, as the frequency a2 
approaches Q, = 0.761, a sharp increase is observed in the absolute magnitudes of the coefficients 
M,(n=l,..., 10) which are the solution of the finite algebraic system obtained by the truncation 
of system (1.4) using the asymptotic form (1.5). At the same time, on passing from a frequency 
a2 = 0.761 to the frequency Cl2 = 0.7615, there is a change in the sign of all the unknowns and the 
sign of the frequency determinant of the system. Upon becoming more remote from the frequency 
a2 = 0.7615, the absolute magnitudes of the unknown IV, decrease and the accuracy to which 
boundary condition (1.1) is satisfied increases. These special features are the attributes of boundary 
resonance [ 11. 
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FIG. 1. 

The displacements u,(O, z) and u,(O, z) and the stress u,(O, z) on the end x = 0 of the waveguide 
are shown in Fig. 1 for different frequencies. Curves l-6 correspond to values of the frequency 
flR2 = 0.4, 0.75, 0.76, 0.765, 0.77, 0.78, respectively. When & = 0.4 and f& = 0.78, the displace- 
ments at the end are practically equal to zero. As the frequency approaches the boundary resonance 
R, = 0.761, the absolute magnitudes of the displacements and the stress u,(O, z) at the end increase 
and, on passing through the frequency of the boundary resonance, the displacements and the stress 
change sign and, as the frequency recedes from a,, they decrease sharply in absolute magnitude. 

The displacements of the segment XE [0,4] of the free face are shown in Fig. 2(a,b) for the same 
frequencies as in Fig. 1. Here, a pronounced localization of the motion is observed near the end at 
around a frequency of R, and a sharp fall-off in the displacements on moving away from the end. 
The displacements change sign on passing through the frequency R,. The characteristic bumps in 
Fig. 2 correspond to displacements on the segment of the surface x E [l/2, l] under the specified 
load. The behaviour of the curves in Fig. 2 clearly shows the possibility of obtaining reliable data on 
the characteristic mode of the vibrations of a waveguide when forced motions are considered. 
Whereas, for small Rz, the defiection follows behind the load (curves 1, 2), at fLZ close to the 
resonance frequency the motion of the surface is determined by the characteristic mode and is only 
slightly distorted by the external load. 

The above-mentioned features of a boundary resonance in a semi-infinite waveguide with a rigidly 
fixed face are analogous to the phenomena of boundary resonance accompanying the longitudinal 
vibrations of a free semi-infinite waveguide, excited by a load at the end in the case when v = 0 [6] 
and, also, in the case of vibrations of a long cylinder with a fixed lateral surface [7]. 

3. Since the frequency 0, E (0, a(‘)) in the situation being considered, it is of interest to trace the 
contribution of each inhomogeneous wave to the formation of the wave field close to the end of the 
waveguide. The solution of the boundary value problem (1.1) in the form of (1.3) can be 
re-expanded in the form of a series in the homogeneous solutions for a corresponding layer. Namely 
[4], in the case of a load (2.1), the displacement vector when XE (0, l/2) is represented in the form 



868 A. M. GOMILKO et al. 

(a> 
FIG. 

(b) 
2. 

u (5, 2) = %k+uvk+ (2) exp (iyk+z) + 2ck-uyk- (2) exp (iyk-z) 

UY (4 = {&c (y, z), uz (y9 4, 

;ux (Y, 4 = haN (Y) (ch w - ch w) - M (y)(ya sh qlz - wzz sh q&l/ 

l(W (YN 

uz (y9 2) = -@I [yaM (Y) (ch w - ch w) + N (Y) (ya sh qs 2 - 

- Qr42 sh !?IMY2M (Y)) 

M (YI = 0 (Y) ah %, - qrqa sh %I, N (~1 = y2 eh 2qi - 

- B (Y) cl-l 2% 

(3.1) 

T (T) = Tqa (9 ch 2q, - 0 (z) ch 2q,) 
00 

F* (z) = & 1 f (x) exp (-& izz) dx. 
0 

Representation (3.1), with the coefficients ck’ expressed in terms of the sequence M,, enables 
one to obtain quantitative estimates of the coefficients for the excitation of the normal modes as a 
function of frequency. 

The absolute magnitudes of the normalized amplitudes of the normal waves (& = ckl\ uTk (0, l)\) 
are shown in Fig. 3 as a function of frequency. Curve 1 is a wave with a purely imaginary 
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FIG. 3. FIG. 4. 

propagation constant and curves 2 and 3 are waves with the first and second complex propagation 
constants, respectively. In a narrow range of frequencies close to R,, a sharp increase in the 
normalized amplitudes of all of the inhomogeneous waves is observed. As in the case of a waveguide 
with free lateral faces, the inhomogeneous wave with the first complex propagation constant is the 
most strongly excited and is decisive in the formation of the wave field at the end face of the 
waveguide. Unlike the case of a boundary resonance in a free waveguide, it manifests itself in the 
presence of a substantial contribution from the wave with the purely imaginary propagation 
constant. A similar phenomenon has been observed in the analysis of the vibrational modes of a 
cylinder with a fixed lateral surface [7]. 

The change in the phase of the normalized amplitude of the wave with the first complex 
propagation constant on passing through the frequency of the marginal resonance fi, is shown in 
Fig. 4. 
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